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The enumeration of alkane isomers has very long traditions. In particular, the 
studies on constitutional isomers of alkanes are well known through several reviews 
[1-5] of the relevant history. As chemical graphs [4], the alkane isomers are repre- 
sented by trees in which the degree of any vertex does not exceed four (quartic trees 
[6]). The enumeration of free (unrooted) quartic trees, corresponding to the consti- 
tutional alkane isomers CnH2n+2, started with Cayley [7,8]. The work of Flavitzky 
[9], which predates Cayley, is often overlooked. It deals with rooted quartic trees, 
corresponding to constitutional alcohol isomers of the form CnH2~+1OH. Since 
Flavitzky and Cayley, a great deal of work has been done on the enumeration of 
constitutional isomers of alkanes. The problem was eventually solved satisfactorily 
for all chemical purposes, and the solution has been expressed in different ways: 
by recursive algorithms [10,11 ], in terms of generating functions [12,13], and on the 
basis of combinatorial summations [14]. The amount of numerical data from com- 
puter programmings, which are available, is overwhelming [3,4,13-17]. In contrast 
to these extensive studies, very little work has been done on the enumeration of 
alkane conformers (conformational isomers), although this kind of enumeration is 
supposed to be of even greater interest in chemistry than the enumeration of alkane 
constitutional isomers. 

A staggered alkane conformer as a chemical graph [4] shall presently be referred 
to as an alkanoid (not to be confused with alkaloid). An alkanoid is an angle- 
restricted tree which can be embedded in the diamond lattice [18-20]. 

A complete mathematical solution for the numbers of nonisomorphic 
unbranched alkanoids has been given by Funck [21 ]. In this work, which was ahead 
of its time, it is not referred explicitly to graph theory. The work passed unnoticed 
among graph theoreticians and mathematical chemists, who later performed simi- 
lar enumerations. In fact, Balaban [22] rediscovered Funck's solution eighteen 
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years later. An alternative approach,  referred to as graphical enumerat ion,  is due 
to Randi6 [23]. Balaban [22] pointed out the interesting one-to-one correspondence 
between unbranched alkanoids and unbranched catafusenes [24]. Hara ry  and 
Read  [25] have furnished the solution for catafusenes in total (unbranched + 
branched)  and presented the result as a complicated generating function. It is 
tempting to investigate whether  their methods could be used to deduce an algebraic 
solution for the numbers  of  nonisomorphic  alkanoids in total (including the 
branched systems). So far, only some rudimentary  results [22,26] are available for 
the numbers  of  branched alkanoids. 

Overlapping systems have to be tolerated. In an overlapping system at least 
two vertices occupy the same site in the d iamond lattice. Such systems are also 
included in the numbers  from Funck [21] and from Balaban [22] for unbranched  
alkanoids. The corresponding systems among catafusenes are the ca tacondensed 
helicenes. They are included in the H a r a r y - R e a d  [25] numbers  and part icularly in 
the algebraic solution for unbranched catafusenes by Balaban and Hara ry  [24]. 

In summary,  the open problem is this: Deduce an algebraic solution for the num-  
bers o f  nonisomorphic  alkanoids, corresponding to staggered alkane conformers  
(CnH2n+2), which can be embedded in a d iamond lattice. 

The present au thor  is interested even in partial solutions of  the problem, e.g. 
for specific symmetries.  It was ascertained that  sixteen symmetry  groups are possi- 
ble for the branched alkanoids, viz.: Td, T, D3d, D3, S6, C3v, C3, Dad, D2, S4, C2h, 
C2v, C2, Cs, Ci, C1. 
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